نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • نوع العنصر
      نوع العنصر
      امسح الكل
      نوع العنصر
  • الموضوع
      الموضوع
      امسح الكل
      الموضوع
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
7 نتائج ل "Erdal, Meryem Sedef"
صنف حسب:
Optimization and characterization of chitosan films for transdermal delivery of ondansetron
The aim of this study was to develop novel transdermal films of ondansetron HCl with high molecular weight chitosan as matrix polymer and 2-(2-ethoxy-ethoxy) ethanol (Transcutol®) as plasticizer. In this context, firstly the physicochemical properties of gels used to formulate transdermal films were characterized and, physicochemical properties and bioadhesiveness of the transdermal films prepared with chitosan gels were assessed. The impact of three different types of terpenes, namely limonene, nerolidol and eucalyptol on in vitro skin permeation of ondansetron from transdermal films were also examined. ATR-FTIR measurements were performed to investigate the effects of the chitosan film formulations on in vitro conformational order of stratum corneum intercellular lipids after 24 h permeation study. The results showed that the chitosan gels consisting of Transcutol® as plasticizer and terpenes as penetration enhancer may be used to prepare transdermal films of ondansetron due to the good mechanical properties and bioadhesiveness of the transdermal films. Eucalyptol (1%) showed higher permeation enhancer effect than the other terpenes and control. ATR-FTIR data confirmed that finding in which eucalyptol induced a blue shift in the both CH₂ asymmetric and symmetric absorbance peak positions indicating increased lipid fluidity of stratum corneum.
Preparation and characterization of naftifine-loaded poly(vinyl alcohol)/sodium alginate electrospun nanofibers
In this study, naftifine (a topical antifungal drug) loaded poly(vinyl) alcohol (PVA)/sodium alginate (SA) nanofibrous mats were prepared using the single-needle electrospinning technique. The produced nanofibers were crosslinked with glutaraldehyde (GTA) vapor. The morphology and diameter of the electrospun nanofibers were studied by scanning electron microscopy (SEM). SEM images showed the smoothness of the nanofibers and indicated that the fiber diameter increased with crosslinking and drug loading. Atomic force microscopy (AFM) images confirmed the uniform production of the scaffolds, and elemental mapping via energy dispersive X-ray spectroscopy (EDS) showed the uniform distribution of the drug within the nanofibers. An attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy study demonstrated that naftifine has sufficient secondary interactions with the polymer blend. The crosslinking treatment decreased the burst drug release effectively and the release mechanism followed Korsmeyer-Peppas Super Case-II transport. Overall, these findings suggest the potential use of naftifine-loaded PVA/SA nanofibers as a topical antifungal drug delivery system.
In Vitro Skin Permeation and Antifungal Activity of Naftifine Microemulsions
Microemulsions are fluid, isotropic, colloidal systems that have been widely studied as drug delivery systems. The percutaneous transport of active agents can be enhanced by their microemulsion formulation when compared to conventional formulations. The purpose of this study was to evaluate naftifine-loaded microemulsions with the objective of improving the skin permeation of the drug. Microemulsions comprising oleic acid (oil phase), Kolliphor EL or Kolliphor RH40 (surfactant), Transcutol (co-surfactant), and water were prepared and physicochemical characterization was performed. skin permeation of naftifine from microemulsions was investigated and compared with that of its conventional commercial formulation. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was used to evaluate the interaction between the microemulsions and the stratum corneum lipids. American Type Culture Collection (ATCC) 10231 and were used to evaluate the antifungal susceptibility of the naftifine-loaded microemulsions. The microemulsion formulation containing Kolliphor RH40 as co-surfactant increased naftifine permeation through pig skin significantly when compared with the commercial topical formulation (p<0.05). ATR-FTIR spectroscopy showed that microemulsions increased the fluidity of the stratum corneum lipid bilayers. Drug-loaded microemulsions possessed superior antifungal activity against ATCC 10231 and . This study demonstrated that microemulsions could be suggested as an alternative topical carrier with potential for enhanced skin delivery of naftifine.
Optimization of Biopolymer Based Transdermal Films of Metoclopramide as an Alternative Delivery Approach
The objectives of this study were to develop and to characterize sodium alginate based matrix-type transdermal films of metoclopramide hydrochloride (MTC) in order to improve patient compliance to treatment. The suitability of sodium alginate was shown to be a natural film former in terms of the physicochemical, mechanical, and bioadhesive features of the MTC loaded transdermal films. Terpinolene provided the highest drug release among the different terpenes (nerolidol, eucalyptol, dl-limonene, or terpinolene) assessed as enhancer. Attenuated Total Reflectance Infrared (ATR-FTIR) spectroscopy analysis performed to evaluate the effect of the transdermal films on skin barrier confirmed enhancer induced lipid bilayer disruption in stratum corneum, indicating its permeation enhancement effect.
Evaluation of clinical trials of the plants, which have ethnobotanical uses for skin disorders in Turkey: a review
Background Ethnobotanical studies investigating a large number of traditional herbs and uses have an important role in the discovery of new drugs. Nowadays, some of these traditional herbs are researched directly in the clinical trials. In this study, it is aimed to evaluate the 19 plant species that have been identified in the clinical trials among 300 plant species belonging to 79 families with traditional use for skin problems in Turkey. Main body Natural sources are very important to treat diseases for thousands of years. The ethnopharmacological research of natural products ranges from the collection of biogenic samples such as plants to preclinical and clinical studies with the aim of developing drug templates or new drugs. In the ethnopharmacological approach, it is aimed to reach the result based on the traditional and modern knowledge about natural resources. The biggest advantage of this approach is synthesizing new and old information. After the plant or natural compound is determined, other processes work similarly with conventional drugs. Methods Ethnobotanical papers, thesis and projects in Istanbul University Faculty of Pharmacy Department of Pharmaceutical Botany and databases (PubMed and Google Scholar) have been sought and results were synthesized. Results Most of the clinical uses of herbs have been seen similar to their traditional uses. On the other hand, there are some plants on which their clinical uses differ from the traditional uses such as Borago officinalis, Calendula officinalis or Euphorbia peplus . When the frequency of traditional uses of herbs are compared, Plantago species, Plantago major and Plantago lanceolata are the most used taxa in Turkey, secondly, Hypericum perforatum comes. However, Plantago species are not of much interest in clinical trials. It is seen that most of the plants in the clinical research are tried for wound healing occuring due to different origins such as cancer, surgery and injury. Side effects were observed only during the application of Allium cepa, Cydonia oblonga and H. perforatum. Conclusions When clinical trials are evaluated in terms of efficacy and overall results, significant differences and effective results are seen in treatment groups given herbs in comparison with placebo or control groups.
Colloidal nanocarriers for the enhanced cutaneous delivery of naftifine: characterization studies and in vitro and in vivo evaluations
In topical administration of antifungals, the drugs should pass the stratum corneum to reach lower layers of the skin in effective concentrations. Thus, the formulation of antifungal agents into a suitable delivery system is important for the topical treatment of fungal infections. Nanosized colloidal carriers have gained great interest during the recent years to serve as efficient promoters of drug penetration into the skin. Microemulsions are soft colloidal nanosized drug carriers, which are thermodynamically stable and isotropic systems. They have been extensively explored for the enhancement of skin delivery of drugs. This study was carried out to exploit the feasibility of colloidal carriers as to improve skin transport of naftifine, which is an allylamine antifungal drug. The microemulsions were formulated by construction of pseudoternary phase diagrams and composed of oleic acid (oil phase), Kolliphor(®) EL or Kolliphor(®) RH40 (surfactant), Transcutol(®) (cosurfactant), and water (aqueous phase). The plain and drug-loaded microemulsions were characterized in terms of isotropy, particle size and size distribution, pH value, refractive index, viscosity, and conductivity. The in vitro skin uptake of naftifine from microemulsions was studied using tape stripping technique in pig skin. The drug penetrated significantly into stratum corneum from microemulsions compared to its marketed cream (P<0.05). Moreover, the microemulsion formulations led to highly significant amount of naftifine deposition in deeper layers of skin than that of commercial formulation (P<0.001). Microemulsion-skin interaction was confirmed by attenuated total reflectance - Fourier transformed infrared spectroscopy data, in vitro. The results of the in vivo tape stripping experiment showed similar trends as the in vitro skin penetration study. Topical application of the microemulsion on human forearms in vivo enhanced significantly the distribution and the amount of naftifine penetrated into the stratum corneum as compared to the marketed formulation (P<0.05). The relative safety of the microemulsion formulations was demonstrated with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide viability test. This study indicated that the nanosized colloidal carriers developed could be considered as an effective and safe topical delivery system for naftifine.
Design and characterisation of colloidal nanocarriers for enhanced skin delivery of etodolac
The aim of this work was to develop colloidal nanocarriers for skin delivery of etodolac (ETD), which is a non-steroidal anti-inflammatory drug orally used for the management of acute pain and inflammation, but leads to unfavourable effects on the stomach. The oleic acid and blend of Labrasol/Trancutol P were used as oil phase and surfactant/co-surfactant mixture in the microemulsion formulations, respectively. ETD loaded microemulsions selecting the microemulsion region of pseudo-ternary phase diagrams were prepared, and then the microemulsions were characterised to confirm formation of oil in water microemulsions via optical isotropy, refractive index, droplet size, electrical conductivity, rheological behaviour and morphological analysis. In vitro permeation of ETD through porcine skin was evaluated using Franz diffusion cells for stable ETD loaded microemulsions. ATR-FTIR spectroscopy analysis was performed to elucidate interaction between the microemulsion components and stratum corneum structure on the molecular level. Confocal laser scanning microscopy analysis was further carried out to visualize skin penetration enhancement effect of the microemulsion formulation consisting of a model lipophilic fluorescent marker, Nile Red. The results indicated that the developed microemulsion formulation consisting of oleic acid, Labrasol, Transcutol P and water offer a potential approach to enhance skin delivery of ETD for topical treatment of inflammatory diseases.